
LECTURE NOTES: 4-8 NEWTON’S METHOD
(PART 2)

RECALL FROM THE PREVIOUS CLASS:

We used Newton’s Method to estimate the positive root of the function f(x) = x

3 � 10x2 + 25x.
(Graphed below.)
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QUESTION 1: What is the “formula” we used in Newton’s Method? That is, if x
n

is an estimate of a
root, how does one calculate the next (better) estimate, x

n+1?

QUESTION 2: Yesterday, we began our estimation by “guessing” the root was about 3. (That is, we
chose x1 = 3.) How much did this choice matter? Are there any truly bad guesses or will any guess
eventually get us to the desired root? Explain your conclusion.

QUESTION 3: What sort of conditions do you think need to hold in order to make Newton’s Method
work and work properly?

Uses a calculator 1 Newton’s Method (part 2)

gorse

H X
,

a µ

X ,
:

:

.•:f(×n)@Picky as an

×n+ ,
= Xn - -

Initial
guess t Newton 's

fE×n) method will converge to

the ' '

wrong
" root

There are bad choices
.

Examples : Point P has a

horizontal tangent .
So picking X

,
would result in NI X ' intercept

( or Zero for fkxn ) )
.

XO
• a good starter guess .

• a function that is differentiable t

continuous near the root in question .



PRACTICE PROBLEMS: For each problem below, (1) solve each problem using Newton’s Method, (2)
use your calculator to determine how good your estimate is, (3) use your calculator to sketch the appro-
priate graph, (4) state explicitly if there are any bad guesses.

1. Approximate any zeros of f(x) = e

x + x.

2. Approximate any zeros of g(x) = x� 2 sinx.
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3. Estimate 6
p
7 correct to 5 decimal places.

4. Approximate the x-value of the point of intersection of f(x) = �x and g(x) = lnx. Continue the
process until two successive approximations differ by less than 0.001
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