Lecture Notes: 4-8 Newton's Method
(PART 2)
Recall from the Previous Class:
We used Newton's Method to estimate the positive root of the function $f(x)=x^{3}-5 \boldsymbol{x}$. (Graphed below.)

QUestion 1: What is the "formula" we used in Newton's Method? That is, if x_{n} is an estimate of a root, how does one calculate the next (better) estimate, x_{n+1} ?

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

(4) Pick x, as an initial guess + Newton's method will convergeto the "wrong" root
QUESTION 2: Yesterday, we began our estimation by "guessing" the root was about 3. (That is, we chose $x_{1}=3$.) How much did this choice matter? Are there any truly bad guesses or will any guess eventually get us to the desired root? Explain your conclusion.
There are bad choices. Examples: Point P has a horizontal tangent. So picking x_{1} would resulting NO x-interest Cor zero for $f^{\prime}\left(x_{n}\right)$).

QUESTION 3: What sort of conditions do you think need to hold in order to make Newton's Method work and work properly?

- a good starter guess.
- a function that is differentiable $*$ continuous near the root in question.

Practice Problems: For each problem below, use Newton's Method to answer the question. Explain how you chose x_{1}. Use your calculator to graph the function tidentify the root (s) you approximated.

1. Approximate any zeros of $f(x)=e^{x}+x$. using 3 iterations of Newton's Method.
thinking: $0=e^{x}+x$ is equivalent to $e^{x}=-x$
 Geometrically,

$$
\text { If } x_{1}=-\frac{1}{2} \text {, then } x_{2}=-\frac{1}{2}-\frac{e^{-1 / 2}-\frac{1}{2}}{e^{-1 / 2}+1} \approx-0.5663110
$$

I can conclude there is one, negative root.
Since $f(0)=1>0$ and $f(-1)=-1+\frac{1}{e}<0$, 1 will pick $x_{1}=-\frac{1}{2}$.
Since $f^{\prime}(x)=e^{x}+1$, Newton's Method will use:

$$
x_{n+1}=x_{n}-\frac{e^{x_{n}}+x_{n}}{e^{x_{n}}+1}
$$

2. Approximate any zeros of $g(x)=x-2 \sin x$. accurate to at least 9 decimal places.

Clearly $x=0$ is a zero of $g(x)$. Also, since $g(x)$ is an odd function, we know that if we find a positive root we will find the symmetric negative root simultaneously.

$$
\begin{aligned}
& g\left(\frac{\pi}{2}\right)=\frac{\pi}{2}-2 \sin \left(\frac{\pi}{2}\right)=\frac{\pi}{2}-2<0 \\
& g(\pi)=\pi-2 \sin (\pi)=\pi>0
\end{aligned}
$$

So there is a root between 1.5 and 3 .
Pick $x_{1}=2$. Newton's Formula here is:

$$
x_{n+1}=x_{n}-\frac{x_{n}-2 \sin x_{n}}{1-2 \cos x_{n}}
$$

$$
x_{1}=2
$$

$$
x_{2}=2-\frac{2-2 \sin (2)}{1-2 \cos (2)} \approx 1.90099594
$$

$x_{3} \approx 1.895511645$
$x_{4} \approx 1.895494267$
$x_{5}=x_{4}$.
So $x= \pm 1.89549427,0$ are
zews of $g(x)$.

Newton's Method (part 2)
3. Estimate $\sqrt[6]{7}$ correct to 5 decimal places. [Note: You need to construct the " $f(x)^{\prime \prime}$ here.] $f(x)=x^{6}-7$ will have $\sqrt[6]{7}$ as a root $f(1)=-6<0, f(2)>0$. I'll pick $x_{1}=1.1$ Newton's Formula would be:

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{\left(x_{n}\right)^{6}-7}{6 x_{n}^{5}}=x_{n}-\frac{1}{6} x_{n}+\frac{7}{6} x_{n}^{-5} \\
& =\frac{1}{6}\left(5 x_{n}+7 x_{n}^{-5}\right)
\end{aligned}
$$

If $x_{1}=1.1$, then $x_{2}=\frac{1}{6}\left(5(1.1)+7(1.1)^{-5}\right)$

$$
\approx 1.641074877
$$

$$
\begin{aligned}
& x_{3} \approx 1.465580165 \quad x_{7} \approx 1.383087554 \\
& x_{4} \approx 1.39386042 \\
& x_{5} \approx 1.383293572 \\
& x_{6} \approx 1.383087631
\end{aligned}
$$

4. Approximate the x-value of the point of intersection of $f(x)=\frac{-\boldsymbol{x}}{3}$ and $g(x)=\ln x$. Continue the process until two successive approximations differ by less than 0.001
We want x so that $\frac{-x}{3}=\ln x$.
Alternately, we want roots to
$H(x)=\frac{1}{3} x+\ln x$.
From the graphs of $f(x)$ and $g(x)$

we know the
point of
intersection
must be between $x=0$ and $x=1$.
choose $x_{1}=\frac{1}{2}$.

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{\frac{1}{3} x_{n}+\ln x_{n}}{\frac{1}{3}+\frac{1}{x_{n}}} \cdot \frac{3 x_{n}}{3 x_{n}} \\
& =x_{n}-\frac{x_{n}^{2}+3 x_{n} \ln x_{n}}{x_{n}+3}
\end{aligned}
$$

